Y

6)jliaJl

Introduction to Robot Operating
System (ROS 1)

ROS architecture (ROS filesystem and ROS Computation Graph level)
Creating and building a ROS workspace and Package

package.xml and package dependencies

Dr. Essa Alghannam

https://manara.edu.sy/

https://manara.edu.sy/

Community level: sites
to share knowledge,
algorithms, codes and
documents about ROS

with others.

Py

R, T

Filesystem level:
how ROS is internally
formed (the folder

structure ,and the

files).

communication

between your ROS

components.

https://manara.edu.sy/

https://manara.edu.sy/

[

o)liaJl

LILEE PSS et

The ROS Community level concepts are ROS resources that enable separate communities to exchange
software and knowledge.

These resources include:

The Community level Cont.

q . main forum for
Contributing to

docu menting

answering questions,

information about
ROS.

providing solutions, and

helping others improving documentation,

or adding new features

https://manara.edu.sy/

https://manara.edu.sy/

ROS Filesystem level PA

6)jliaJl

Quick Overview of Filesystem Concepts

* Packages: Packages are the software organization unit of ROS code (structure and content to create a

program within ROS).
Each package can contain libraries, executables, scripts, or other artifacts.

* Manifests (package.xml): A manifest is a description of a package. It serves to define dependencies

between packagesand to capture meta information about the package like version, maintainer, license, etc.

https://manara.edu.sy/

https://manara.edu.sy/
http://wiki.ros.org/catkin/package.xml

Pac kage structure IA
deola
o1li_aJl

The simplest possible package might have a structure whi¢htooks like this:

my_package/
CMakelLists.txt

package xml

WO rkspace structure: /

workspace_folder/ -- WORKSPACE

Packages in a catkin Workspace: src/ -- SOURCE SPACE
CMakelists.txt ~ -- Toplevel' CMake file, provided by catkin

package 1/

-- CMakelLists.txt file for package 1

-- Package manifest for package 1

package_n/
-- CMakelLists.txt file for package n

-- Package manifest for package_n

https://manara.edu.sy/

https://manara.edu.sy/

[

Important note

Imagine you want to build a robot navigation system in your workspace. You might create a package called
‘my_navigation_system’ within your workspace. This package might depend on various packages from the “ros-noetic-
navigation” metapackage.

‘ros-noetic-navigation’ is installed system-wide and provides the essential navigation tools.

Workspace Dependencies:

1- When you build packages within your workspace, your package’s “package xml file will specify its dependencies.

2- If you need to use packages that are part of a metapackage, you would list those packages as dependencies in your

‘package.xml‘.

3- The build process will then ensure that those packages (from the metapackage) are available for your workspace.

https://manara.edu.sy/

https://manara.edu.sy/

[

6)liaJl

o -FMetapackages are typically installed system-wide as part
of your ROS distribution.

o Workspace for Your Projects: Use your workspace to develop and manage your
custom packages.

* Dependencies in “package xml’: Specify your package's dependencies in its
‘package.xml file.

https://manara.edu.sy/

https://manara.edu.sy/

Parameter

The ROS Computation [21\7 Nod e e

Graph level daol s ‘\\ /S

Ei wwwwwww I {annputamn >
Graph Level
® ROS creates a network where all the / l \
processes are connected. fopics Services Bags

* Any node in the system can access this

network, interact with other nodes.

Service

®* The basic concepts in this level are

Request

nodes, Master, Parameter Server, T

Response

messages ,services, topics, and bags

* All provide data to the graph in different

ways.

https://manara.edu.sy/

https://manara.edu.sy/

Y

6)jliaJl

Creating a ROS workspace
and Package

https://manara.edu.sy/

https://manara.edu.sy/

2\

Activities £ Files v 16:58 18 Jsbl

Create a ROS Workspace

“>® (» {4} Home mycatkin ws «

4) Recent i
% Starred m
. ~ . {3t Home
S mkdir -p ~/mycatkin_ws/src
[Desktop

S cd ~/mycatkin_ws/

[E] Documents

@ { Downloads
% JJ Music

[« Pictures
= Videos
Activities () Terminal v 17:04 18 Jobl 2 S0 @~

M =M essa@essa: ~/mycatkin_ws Q = = a X

:~$ mkdir -p ~/mycatkin_ws/src

N :~$ cd ~/mycatkin ws/
: $

“src” selected (containing 0 items)

https://manara.edu.sy/

https://manara.edu.sy/

B u i I d i N g d Cat ki Nn wo rks Pace %v * The new build system for ROS is "catkin", while "rosbuild" is the

old ROS build system which was replaced by catkin.

before creation of a package %
S catkin_make Nt Avm

ssa: ~/mycatkin_ws

* youshould now have a 'build" and
{it Home mycatkin ws Q
'devel’ folder. i
U Recent
* Inside the 'devel' folder you can see that ou _
-- Usi arred .catkin_
. == k
there are now several setup.*sh files. BN i Home workspace
* Sourcing any of these files will overlay - O Desktop

® [Documents

this workspace on top of your

i Downloads

3

environment.

¥
.—):5'?:‘\
o)

::I: J1 Music
CMakelists.txt is created in in your 'src’

folder.

:
L
5
! 3
o
1048

EY [Pictures

-
)

,‘} &2
D
I

fiz, Trash “src” selected (containing 1item)

- Build files have been written to: /homejfessafmycatkin_ws/build

5]

https://manara.edu.sy/

https://manara.edu.sy/

Pac kage structure IA
deola
o1li_aJl

The simplest possible package might have a structure whi¢htooks like this:

my_package/
CMakelLists.txt

package xml

WO rkspace structure: /

workspace_folder/ -- WORKSPACE

Packages in a catkin Workspace: src/ -- SOURCE SPACE
CMakelists.txt ~ -- Toplevel' CMake file, provided by catkin

package 1/

-- CMakelLists.txt file for package 1

-- Package manifest for package 1

package_n/
-- CMakelLists.txt file for package n

-- Package manifest for package_n

https://manara.edu.sy/

https://manara.edu.sy/

P

Creating a ROS Package &%

* The package must contain a catkin compliant package.xml file.

* That package xml file provides meta information about the package.
®* The package must contain a CMakeLists.txt which uses catkin.

® Each package must have its own folder

®* This means no nested packages nor muItiple packages sharing the same directory.

https://manara.edu.sy/

https://manara.edu.sy/

[

Creating a catkin Package doola

_: this command used to create packages.

You should have created this in the Creating a Workspace:

\ $ cd ~/catkin_ws/src

https://manara.edu.sy/

https://manara.edu.sy/

Packages Z4Y

mycatkin_ws SrC beginner_tutorials

* Starred include CMakelLists package.

bxt xml

“src” selected (containing 0 items)
B Files « 17:21 24 JoYl uuic @

] { mycatkin_ws beginner_tutorials -

—

4 0 Recent

* Starred

CMakelLists package.

vl winl

“include” selected (containing 1 item)

Activities 7 Files -

srC beginner_tutorials include

4 ‘U Recent

Starred

mmm

"beginner_tutorials” selected (containing 0 items)

https://manara.edu.sy/

Building a catkin workspace |\ catkin_make compiles your
. B packages but doesn't install

after creation of a package Y thern.

To install packages into the

‘install” folder, you need to

run “catkin_make install °

Base path: /home/essa/mycatkin_ws

$ cd ~/catkin_ws

$ catkin_make output
Install space: /home/essa/mycatkin_ws/install
Creating symlink "/home/essa/mycatkin_ws/src/CMakeLists.txt" pointing to
"/opt/ros/noetic/share/catkin/cmake/toplevel.cmake”
After the workspace has been built it has created a similar eSS
structure in the devel subfolder as you usually find under {;i Home
/opt/ros/$ROSDISTRO_NAME. ([Desktop
bin etc include lib share
Activities B Files v 16:29 21 Jsbi [Documents E
2 (i Home mycatkin_ws devel ~ H 3 Downloads
a env.sh local_ local_ local_ setup.bash
O Recent . . = > o = 1 Music setup.bash setup.sh setup.zsh
* Starred lib share cmake.lock env.sh local_ local_ > > & - —
% fome setup.bash setup.sh
L] tecion = = = : [= H Videos setup.sh setup.zsh _setup_util. .catkin .rosinstall
- local_ setup.bash setup.sh setup.zsh _setup_util. .built_by Py
gl 5 Documents setup.zsh py
ol O Downloads = = \ttps://manara.edu.sy/

a J1 Music .catkin .rosinstall

https://manara.edu.sy/

Details of catkin Output: ﬁv

-- Found Pythonlnterp: /usr/bin/python3 (found version "3.8.10")

pn fjJI iqa .[-- Using Python nosetests: /usr/bin/nosetests3
T -- catkin 0.8.10

Running commandzlcmake /home/essa/mycatkin_ws/src BUILD SHARED LIBS is on

-DCATKIN_DEVEL_PREFIX=/home/essa/mycatkin_ws/devel - BUILD_SHARED _LIBS is on

-DCMAKE_INSTALL_PREFIX=/home/essa/mycatkin_ws/install -G Unix Makefiles" in "/home/essa/mycatkin_ws/buildl --
e

-- Using CATKIN_DEVEL_PREFIX: /home/essa/mycatkin_ws/devel

-- traversing 1 packages in topological order:
-- Using CMAKE_PREFIX_PATH: /opt/ros/noetic beoi "
-- - beginner_tutorials

-- This workspace overlays: /opt/ros/noetic
-- Found Pythonlnterp: /usr/bin/python3 (found suitable version "3.8.10", minimum required is "3") i a0

-- Using PYTHON_EXECUTABLE: /usr/bin/python3 ~

- Using Debian Python package layout -- +++ processing catkin package: 'beginner_tutorials

--==>add_subdirectory(begi tutorial
-- Using empy: /usr/lib/python3/dist-packages/em.py add_subdirec ory(eginner_tutoria S)

-- Configuring done

- Using CATKIN_ENABLE_TESTING: ON)
-- Generating done
-- Call enable_testing() -- Build files have been written to: /home/essa/mycatkin_ws/build

-- Using CATKIN_TEST_RESULTS_DIR: /home/essa/mycatkin_ws/build/test_results 4

-- Forcing gtest/gmock from source, though one was otherwise available. HHHH Running command: "make -j6 -16"in
"/home/essa/mycatkin_ws/build"

#HH#H

-- Found gtest sources under '/usr/src/googletest’: gtests will be built

-- Found gmock sources under '/usr/src/googletest: gmock will be built

https://manara.edu.sy/

https://manara.edu.sy/

Workspace Folders [>A

6jliall

1. src” (Source):
Purpose: This is where you store all the source code for your ROS packages.
Structure: You'll create individual package folders within “src’.
each package folder: contains a “package.xml” (package description file), cmake
and the actual source code (C++, Python, etc.).
Example:

**src/my_package’

**src/my_other_package’

https://manara.edu.sy/

https://manara.edu.sy/

Workspace Folders [>A

6jliall

2. 'build” (Build):

Purpose: This directory is created by ROS when you run the “catkin_make™ command (or
“colcon build” for ROS2). It's a temporary working space where ROS builds your packages
from the source code in “src’.

Contents: build” contains intermediate files and compiled code related to your packages
during the build process. It's generally not meant to be directly interacted with.

Clean-up: You can safely delete the "build” directory to free up space after a successful build.

https://manara.edu.sy/

https://manara.edu.sy/

Workspace Folders [>A

6jliall

3. ‘devel (Development):
Purpose: This directory holds the compiled, ready-to-use ROS packages after a successful build.
Contents:
1- Include directories: Header files needed by your packages and other ROS packages.
2- Library directories: Compiled libraries used by your ROS nodes and other tools.

3- Executable files: The actual nodes, tools, and scripts you've created within your packages.

Essential for Running: The “devel” directory must be added to your ROS environment's
"ROS_PACKAGE_PATH" variable so that ROS knows where to find your compiled packages.

https://manara.edu.sy/

https://manara.edu.sy/

W

6jliall

Workspace Folders

In Summary:
1. src: Where you write your ROS package code.
2. build™: A temporary space used by ROS during package compilation.

3. “devel™: Contains the final, compiled packages that ROS uses at runtime.

Important Notes:

1- “catkin_make" (or “colcon build" in ROS2): The build process uses this command to compile your ROS

packages, creating the "build” and “devel” directories.

2- Environment Setup: You usually need to source the “devel/setup.bash™ script (or similar) to ensure your

ROS environment is correctly configured to use your compiled packages.

https://manara.edu.sy/

https://manara.edu.sy/

ROS PACKAGE PATH environment DA@

variable and sourcing the setup file asos
otioll

ROS PACKAGE_PATH environment variable refers to

main one before sourcing the new setup .sh

S echo SROS_PACKAGE PATH

Jopt/ros/noetic/share

Before continuing source your new : $ source devel/setup.bash
. : $ echo $ROS PACKAGE PATH
SetUFL*Sflfﬂei ses /home/essa/mvcatkln ws/src:/opt/ros/noetic/share

S |

To make sure your workspace is properly overlayed by the setup script, make sure

ROS_PACKAGE_PATH environment variable includes the directory you're in.

To add the workspace to your ROS environment you need IW file:
$. ~/mycatkin_ws/devel/setup.bash

https://manara.edu.sy/

https://manara.edu.sy/

Install a catkin workspace

catkin_make install

ROS workspace is set up correctly. This
means it should contain the following
folders:

1- "src: Where your ROS package code
goes.

2- "build™: The build directory.

3- “devel™: Contains the built package
code.

4-install: Where the packages are

installed (after “catkin_make install’).

Activities £ Files « 17:50 24 JoVl i @
“» [+ essa(@essa: ~/mycatkin_ws

- Det
» -- usi & {it Home mycatkin_ws Q
- Ust

F“- 1) Recent

- Us] * Starred .catkin_

Us: workspace
- Fol {it Home

H: [Desktop
[E Documents
.-:_ ¥ Downloads
-:l: J1 Music
[+] Pictures

iH videos

g . Trash

“src” selected (containing 1 item)

s have been written to: /fhome/essa/mycatkin_ws/build

s []

https://manara.edu.sy/

https://manara.edu.sy/

[

6)jliaJl

package.xml| and CMakeLists.txt

https://manara.edu.sy/

https://manara.edu.sy/

Some ROS Commands

* Navigating with command-line tools such

Y

6)jliaJl

as Is and cd can be very tedious which is why ROS

provides tools to help you.

>rospack find: To find the path of a package

> rosls: This command lists the files from a package.

> roscd: This command helps to change the directory.

$ rospack find turtlesim

To find the path of the turtlesim package

opt/ros/noetic/share/turtlesim

Activities £ Files ~

“B (opt

4 0 Recent
% Starred
(3} Home
] Desktop

ﬁ [E Documents

Z:J ¥ Downloads

é J1 Music

[&] Pictures

I Videos

i Trash

—
—

+ Other Locations

= essaalghnna...

ros

noetic

&

rosbag

Fa

rosgraph

o

rosmaster

rosrun

&

rosunit

ot

rqt_graph

18:43 18 JoLl

bin ~«

& &
rosboost- rosclean
cfg
& &
roslaunch roslaunch-
complete
& o
rosmsg rosmsg-
proto
& &
rosservice rossrv
i o
roswtf rqt
. &
rqt_image_ rqt_logger_
view level

$ rosls turtlesim

to list the files inside the pack

rosconsole

b

roslaunch-

deps

]

rosnode

rosstack

e

rqt_bag

&

rqt_plot

& &
roscore roscreate-
pkg
- &
roslaunch- rosmake
logs
oD
rosparam
& o
rostest rostopic
@ o
rqt_console rqt_dep
& a
rqt_shell rqt_topic

“rospack” selected (14.7 kB)

cmake images srv

package.xml msg

https://manara.edu.sy/

https://manara.edu.sy/

>y

6)jliaJl

®* These dependencies for a package are stored in the package.xml file:

$ roscd beginner_tutorials

$ cat package.xml cat: Utility to concatenate files to standard output

<package format="2">

<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>

</package>

https://manara.edu.sy/

https://manara.edu.sy/

Key Sections of >
‘package.xml: oo

6)liall

1. Package Information:
* *<name>": The unique name of your ROS package (e.g., my_robot_pkg’).
* “<version>": The version number (e.g., '1.0.0°).
* “<description>": A brief description of what the package does.

2. Dependencies:

*

“<buildtool_depend>": Lists the build tools necessary to compile the package. Typically includes “catkin (for building packages with catkin).

*

<build_depend>": Lists the build-time dependencies, meaning other ROS packages needed during compilation.

*

‘<run_depend>: Lists the run-time dependencies, meaning other ROS packages needed for the package to execute successfully.

* *<depend>": This is a deprecated tag that can be used for both build-time and run-time dependencies. It's usually used for packages that are
both build-time and run-time dependent.

4. License:

* *<license>": Specifies the license under which the package is distributed.

https://manara.edu.sy/

https://manara.edu.sy/

- <?xml version="1.0"?>

<package format="2">
<name>beginner_tutorials</name>
<version>0.0.0</version>

<description>The beginner_tutorials package</description>

<l-- One license tag required, multiple allowed, one license per tag -->
<l-- Commonly used license strings: -->
<l-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->

<license>TODO</license>

<!I-- Author tags are optional, multiple are allowed, one per tag -->
<l-- Authors do not have to be maintainers, but could be -->
<l-- Example: -->

<author email="jane.doe@example.com">Jane Doe</author>

o)L

<l-- Use depend as a shortcut for packages that are both build and exec dependencies -->
ﬂl«-ﬁ <depend>roscpp</depend> -->
i__a!H Note that this is equivalent to the following: -->

“==elz <puild_depend>roscpp</build_depend> -->

<l-- <exec_depend>roscpp</exec_depend> -->

<!-- Use build_depend for packages you need at compile time: -->

<!-- <build_depend>message_generation</build_depend> -->

<l-- Use build_export_depend for packages you need in order to build against this package: -->
<!-- <build_export_depend>message_generation</build_export_depend> -->

<!l-- Use buildtool_depend for build tool packages: -->

<!-- <buildtool_depend>catkin</buildtool_depend> -->

<l-- Use exec_depend for packages you need at runtime: -->

<l-- <exec_depend>message_runtime</exec_depend> -->

<l-- Use test_depend for packages you need only for testing: -->

<l-- <test_depend>gtest</test_depend>-->

<l-- Use doc_depend for packages you need only for building documentation: -->

<!-- <doc_depend>doxygen</doc_depend> -->

<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>

<l-- The export tag contains other, unspecified, tags -->
<export>
<l-- Other tools can request additional information be placed here -->

</package>

https://m

nara.edu.sy/

https://manara.edu.sy/

[

1 <?xml version="1.0"?> doal A&
2 <package format="2"> 8)LiaJl
3 <name>beginner_tutorials</name>
4 <version>0.1.0</version>

5 <description>The beginner_tutorials package</description>

6

8 <license>BSD</license>

10 <author email="you@yourdomain.tld">Jane Doe</author>

18 <exec_depend>roscpp</exec_depend>
19 <exec_depend>rospy</exec_depend>
20 <exec_depend>std_msgs</exec_depend>
21

22 </package>

https://manara.edu.sy/

https://manara.edu.sy/

0w 0 N o W

W

6jliall

“<buildtool_depend>catkin</buildtool_depend>": This specifies that the "catkin" build system is required to build this package. . It's a core ROS tool for package
management.

“<build_depend>roscpp</build_depend>": Indicates that the roscpp” package is needed during the build process. roscpp” provides C++ libraries for ROS
development.

“<build_depend>rospy</build_depend>": Indicates that the ‘rospy” package is needed during the build process. ‘rospy provides Python libraries for ROS
development.

“<build_depend>std_msgs</build_depend>": Indicates that the 'std_msgs" package is needed during the build process. 'std_msgs provides standard message
types (e.g., for integers, floats, strings) used in ROS.

“<build_export_depend>roscpp</build_export_depend>": This indicates that roscpp" needs to be built before building against this package.
“<build_export_depend>rospy</build_export_depend>": This indicates that ‘rospy" needs to be built before building against this package.
“<build_export_depend>std_msgs</build_export_depend>": This indicates that 'std_msgs needs to be built before building against this package.
‘<exec_depend>roscpp</exec_depend>": This indicates that ‘roscpp’ is needed at runtime.

‘<exec_depend>rospy</exec_depend>": This indicates that ‘rospy is needed at runtime.

“<exec_depend>std_msgs</exec_depend>": This indicates that ‘std_msgs’ is needed at runtime.

https://manara.edu.sy/

https://manara.edu.sy/

[Py

<?xml version="1.0"?>
<package>

<name>my_robot_pkg</name>

<version>1.0.0</version>

<description>A simple ROS package to control a simulated
robot.</description>

<maintainer email="your_email@example.com">Your
Name</maintainer>

<license>BSD</license>

<run_depend>rospy</run_depend>
<run_depend>std_msgs</run_depend>
</package>

6)ligall

1. “<buildtool_depend>catkin</buildtool_depend>": This specifies that
the “catkin® build system is required to build your package. It's a core
ROS tool for package management.

2. '<build_depend>rospy</build_depend>": This indicates that the
‘rospy” package is needed during the build process. “rospy" provides
Python libraries for ROS development.

3. “<build_depend>std_msgs</build_depend>": This indicates that the
‘std_msgs" package is needed during the build process. “std_msgs’
provides standard message types (like integers, floats, strings) used in
ROS.

4. “<run_depend>rospy</run_depend>": This indicates that the ‘rospy"
package is required when your package is running (at runtime).

5. ‘<run_depend>std_msgs</run_depend>": This indicates that the

‘std_msgs" package is required when your package is running (at

runtime).

https://manara.edu.sy/

https://manara.edu.sy/

Y

6)jliaJl

CMakelists.txt

® The CMakelLists.txt file created by _will be covered in the later

tutorials about building ROS code.

https://manara.edu.sy/

https://manara.edu.sy/

[

&jliall

package dependencies

https://manara.edu.sy/

https://manara.edu.sy/

Dj _can recursively determine all nested dependencies.

p a C ka ge d e p e n C e n C I eS S rospack depends beginner_tutorials
1 - F | rSt_O rd e r d e :) e ﬂ d e ﬂ C I egjw[* cpp_common * message_generation

* rostime * rosbuild
S rospack dependsl beginner_tutorials :gzzgg:z;arli:ization zf;i(:::ge
* roscpp ‘rospack’ is a command-line tool * catkin * rosgraph_msgs
e rospy within ROS used to manage and © Benmsg * xmirpcpp
inspect ROS packages. It's essentially a ki . " N
« std_msgs , * message_runtime * rosgraph
- package manager, helping you S COD . o e—
understand dependencies and . geneus + rospack
relationships between packages. Gennodejs e roslib
e genlisp * rospy
2-Indirect dependencies
$ rospack depends1 rospy ‘dependsl’ is a special directive within the “package.xml file (a ROS package's descriptor).
« genpy It declares the dependencies that a package needs to compile and run correctly.
* roscpp *The "1" in "dependsl’ signifies that the package is "build-time" dependent, meaning
« rosgraph it's required to build the package itself.
* rosgraph_msgs * There's also "depends’, which indicates "run-time" dependencies, needed for the
e roslib package to execute properly.
————*—std_msgs ‘beginner_tutorials” is the name of a specific ROS package

If\++nr //m')n')r') pavanl
LMo 771 a-E6t- "Y/

https://manara.edu.sy/

package dependencies Pﬂ
1-First-order dependencies o e

1. Calls “rospack™: It tells the ROS system to use the ‘rospack’ tool.

2. Specifies the "depends1” directive: It asks “rospack” to list all the build-time dependencies for
the "beginner_tutorials™ package.

you'll typically see a list of other packages that "beginner_tutorials’ relies on to be built

successfully. These dependencies might include:

* Core ROS packages: Like “rospy”, “roscpp’, 'std_msgs’, and “sensor_msgs" (for basic

communication and message definitions).

* Specific libraries: If beginner_tutorials™ uses external libraries, they might be listed here.

https://manara.edu.sy/

https://manara.edu.sy/

[

&jliall

LILEE PSS et

mkdir -p ~/mycatkin_ws/src
cd ~/mycatkin_ws/

catkin_make

catkin_make install

source is just a bash builtin that does exactly the same as (.).

https://manara.edu.sy/

https://manara.edu.sy/

Navigating the ROS ZAY

Filesystem ST

] { opt ros noetic
4 T) Recent roscpp_ roscpp_ roscreate ros_ roseus rosgraph
traits tuktorials environmen
* we will inspect a package in ros- * Starred t

tutorials, please install it using G} Home
[Desktop rosgraph_ roslaunch roslib roslint roslisp

—= msgs
. [E] Documents . .
A £ Downloads rosmake rosmaster ode rosout

J1 Music

$ sudo apt-get install ros-noetic-ros-

_|

=]

w

L

s}

=

=]

L
.:‘|

tutorials 5 [«] Pictures rosparam rospy rospy_ rosservice rostest
. tutorials
H Videos I I I
rostopic ros_ rosunit roswktf rqt_action

= essaalghnna... tutorials

rospack
, Trash .
rostime

+ Other Locations

rqt_console rgt_dep rqgt_graph

common_

https://manara.edu.sy/

https://manara.edu.sy/

R, T

https://manara.edu.sy/

https://manara.edu.sy/

	Slide 1: Introduction to Robot Operating System (ROS 1)
	Slide 2
	Slide 3: The Community level
	Slide 6: ROS Filesystem level
	Slide 7:
	Slide 8: Important note
	Slide 9
	Slide 10
	Slide 13: Creating a ROS workspace and Package
	Slide 14: Create a ROS Workspace
	Slide 15: Building a catkin workspace before creation of a package
	Slide 16:
	Slide 17: Creating a ROS Package
	Slide 18: Creating a catkin Package
	Slide 19: Packages
	Slide 20: Building a catkin workspace after creation of a package
	Slide 21: Details of catkin Output:
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: catkin_make install
	Slide 28: package.xml and CMakeLists.txt
	Slide 29: Some ROS Commands
	Slide 30
	Slide 31: Key Sections of `package.xml`:
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: CMakeLists.txt
	Slide 37
	Slide 38
	Slide 39: package dependencies 1-First-order dependencies
	Slide 40
	Slide 41
	Slide 42

