
https://manara.edu.sy/

https://manara.edu.sy/

Introduction to Robot Operating
System (ROS 1)

Dr. Essa Alghannam

ROS architecture (ROS filesystem and ROS Computation Graph level)
Creating and building a ROS workspace and Package

package.xml and package dependencies

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

computation graph
level: graph to show
communication
between your ROS

components.

ROS Architecture

Community level: sites
to share knowledge,
algorithms, codes and
documents about ROS
with others.

Filesystem level:
how ROS is internally
formed (the folder
structure ,and the

files).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

The Community level

The ROS Community level concepts are ROS resources that enable separate communities to exchange
software and knowledge.

These resources include:

The ROS Wiki: the
main forum for
documenting
information about
ROS.

The Community level Cont.

Forums and Q&A Sites (ROS
Answers, ROS Discourse):
answering questions,
providing solutions, and
helping others

GitHub Repositories:
Contributing to open-source
ROS distributions, ROS
packages, fixing bugs,
improving documentation,
or adding new features

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Quick Overview of Filesystem Concepts

• Packages: Packages are the software organization unit of ROS code (structure and content to create a
program within ROS).

 Each package can contain libraries, executables, scripts, or other artifacts.

• Manifests (package.xml): A manifest is a description of a package. It serves to define dependencies
between packages and to capture meta information about the package like version, maintainer, license, etc...

ROS Filesystem level

https://manara.edu.sy/
http://wiki.ros.org/catkin/package.xml

https://manara.edu.sy/

https://manara.edu.sy/

my_package/
 CMakeLists.txt
 package.xml

The simplest possible package might have a structure which looks like this:

workspace_folder/ -- WORKSPACE
src/ -- SOURCE SPACE
CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin
package_1/
CMakeLists.txt -- CMakeLists.txt file for package_1
package.xml -- Package manifest for package_1

 ...
package_n/
CMakeLists.txt -- CMakeLists.txt file for package_n
package.xml -- Package manifest for package_n

workspace structure:

Package structure

Packages in a catkin Workspace:

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Important note

Imagine you want to build a robot navigation system in your workspace. You might create a package called
`my_navigation_system` within your workspace. This package might depend on various packages from the `ros-noetic-
navigation` metapackage.

`ros-noetic-navigation` is installed system-wide and provides the essential navigation tools.

`my_navigation_system` is in your workspace and leverages those tools to implement your specific navigation system.

Workspace Dependencies:

1- When you build packages within your workspace, your package's `package.xml` file will specify its dependencies.

2- If you need to use packages that are part of a metapackage, you would list those packages as dependencies in your
`package.xml`.

3- The build process will then ensure that those packages (from the metapackage) are available for your workspace.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• System-Wide Installation: Metapackages are typically installed system-wide as part
of your ROS distribution.

• Workspace for Your Projects: Use your workspace to develop and manage your
custom packages.

• Dependencies in `package.xml`: Specify your package's dependencies in its
`package.xml` file.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• ROS creates a network where all the
processes are connected.

• Any node in the system can access this
network, interact with other nodes.

• The basic concepts in this level are
nodes, Master, Parameter Server,
messages ,services, topics, and bags

• All provide data to the graph in different
ways.

The ROS Computation
Graph level

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Creating a ROS workspace
and Package

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Create a ROS Workspace

$ mkdir -p ~/mycatkin_ws/src
$ cd ~/mycatkin_ws/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

$ catkin_make

• you should now have a 'build' and
'devel' folder.

• Inside the 'devel' folder you can see that
there are now several setup.*sh files.

• Sourcing any of these files will overlay
this workspace on top of your
environment.

• CMakeLists.txt is created in in your 'src'
folder.

Building a catkin workspace
before creation of a package

• The new build system for ROS is "catkin", while "rosbuild" is the
old ROS build system which was replaced by catkin.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

my_package/
 CMakeLists.txt
 package.xml

The simplest possible package might have a structure which looks like this:

workspace_folder/ -- WORKSPACE
src/ -- SOURCE SPACE
CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin
package_1/
CMakeLists.txt -- CMakeLists.txt file for package_1
package.xml -- Package manifest for package_1

 ...
package_n/
CMakeLists.txt -- CMakeLists.txt file for package_n
package.xml -- Package manifest for package_n

workspace structure:

Package structure

Packages in a catkin Workspace:

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Creating a ROS Package

• The package must contain a catkin compliant package.xml file.

• That package.xml file provides meta information about the package.

• The package must contain a CMakeLists.txt which uses catkin.

• Each package must have its own folder

• This means no nested packages nor multiple packages sharing the same directory.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Creating a catkin Package

You should have created this in the Creating a Workspace:

$ cd ~/catkin_ws/src

$ catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

catkin_create_pkg : this command used to create packages.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Packages

• include/package_name/: This directory
includes the headers of libraries that you
would need.

• src/: This is where the source files of your
programs are present.

• CMakeLists.txt: This is the CMake build file.

• manifest.xml: This is the package manifest
file.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Building a catkin workspace
after creation of a package

$ cd ~/catkin_ws

$ catkin_make

Base path: /home/essa/mycatkin_ws
Source space: /home/essa/mycatkin_ws/src
Build space: /home/essa/mycatkin_ws/build
Devel space: /home/essa/mycatkin_ws/devel
Install space: /home/essa/mycatkin_ws/install
Creating symlink "/home/essa/mycatkin_ws/src/CMakeLists.txt" pointing to
"/opt/ros/noetic/share/catkin/cmake/toplevel.cmake"

willow, birch, or oak

After the workspace has been built it has created a similar
structure in the devel subfolder as you usually find under
/opt/ros/$ROSDISTRO_NAME.

output

catkin_make` compiles your
packages but doesn't install
them.
To install packages into the
`install` folder, you need to
run `catkin_make install `

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

####

Running command: "cmake /home/essa/mycatkin_ws/src

-DCATKIN_DEVEL_PREFIX=/home/essa/mycatkin_ws/devel

 -DCMAKE_INSTALL_PREFIX=/home/essa/mycatkin_ws/install -G Unix Makefiles" in "/home/essa/mycatkin_ws/build"

####

-- Using CATKIN_DEVEL_PREFIX: /home/essa/mycatkin_ws/devel

-- Using CMAKE_PREFIX_PATH: /opt/ros/noetic

-- This workspace overlays: /opt/ros/noetic

-- Found PythonInterp: /usr/bin/python3 (found suitable version "3.8.10", minimum required is "3")

-- Using PYTHON_EXECUTABLE: /usr/bin/python3

-- Using Debian Python package layout

-- Using empy: /usr/lib/python3/dist-packages/em.py

-- Using CATKIN_ENABLE_TESTING: ON

-- Call enable_testing()

-- Using CATKIN_TEST_RESULTS_DIR: /home/essa/mycatkin_ws/build/test_results

-- Forcing gtest/gmock from source, though one was otherwise available.

-- Found gtest sources under '/usr/src/googletest': gtests will be built

-- Found gmock sources under '/usr/src/googletest': gmock will be built

-- Found PythonInterp: /usr/bin/python3 (found version "3.8.10")
-- Using Python nosetests: /usr/bin/nosetests3
-- catkin 0.8.10
-- BUILD_SHARED_LIBS is on
-- BUILD_SHARED_LIBS is on
--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
--   traversing 1 packages in topological order:
--   - beginner_tutorials
-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
-- +++ processing catkin package: 'beginner_tutorials'
-- ==> add_subdirectory(beginner_tutorials)
-- Configuring done
-- Generating done
-- Build files have been written to: /home/essa/mycatkin_ws/build
####
Running command: "make -j6 -l6" in
"/home/essa/mycatkin_ws/build"
####

Details of catkin Output:

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

1. `src` (Source):
Purpose: This is where you store all the source code for your ROS packages.
Structure: You'll create individual package folders within `src`.
 each package folder: contains a `package.xml` (package description file), cmake
and the actual source code (C++, Python, etc.).
Example:
 * `src/my_package`
 * `src/my_other_package`

Workspace Folders

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

2. `build` (Build):
Purpose: This directory is created by ROS when you run the `catkin_make` command (or
`colcon build` for ROS2). It's a temporary working space where ROS builds your packages
from the source code in `src`.
Contents: `build` contains intermediate files and compiled code related to your packages
during the build process. It's generally not meant to be directly interacted with.
Clean-up: You can safely delete the `build` directory to free up space after a successful build.

Workspace Folders

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

3. `devel` (Development):

Purpose: This directory holds the compiled, ready-to-use ROS packages after a successful build.

Contents:

 1- Include directories: Header files needed by your packages and other ROS packages.

 2- Library directories: Compiled libraries used by your ROS nodes and other tools.

 3- Executable files: The actual nodes, tools, and scripts you've created within your packages.

Essential for Running: The `devel` directory must be added to your ROS environment's
`ROS_PACKAGE_PATH` variable so that ROS knows where to find your compiled packages.

Workspace Folders

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

In Summary:

1. `src`: Where you write your ROS package code.

2. `build`: A temporary space used by ROS during package compilation.

3. `devel`: Contains the final, compiled packages that ROS uses at runtime.

Important Notes:

1- `catkin_make` (or `colcon build` in ROS2): The build process uses this command to compile your ROS
packages, creating the `build` and `devel` directories.

2- Environment Setup: You usually need to source the `devel/setup.bash` script (or similar) to ensure your
ROS environment is correctly configured to use your compiled packages.

Workspace Folders

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Before continuing source your new
setup.*sh file:

To make sure your workspace is properly overlayed by the setup script, make sure
ROS_PACKAGE_PATH environment variable includes the directory you're in.

ROS_PACKAGE_PATH environment variable refers to
main one before sourcing the new setup .sh

ROS_PACKAGE_PATH environment
variable and sourcing the setup file

To add the workspace to your ROS environment you need to source the generated setup file:
$. ~/mycatkin_ws/devel/setup.bash

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

catkin_make install

Install a catkin workspace

ROS workspace is set up correctly. This
means it should contain the following
folders:
 1- `src`: Where your ROS package code
goes.
 2- `build`: The build directory.
 3- `devel`: Contains the built package
code.
 4- `install`: Where the packages are
installed (after `catkin_make install`).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

package.xml and CMakeLists.txt

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Some ROS Commands

➢rospack find: To find the path of a package

➢rosls: This command lists the files from a package.

➢roscd: This command helps to change the directory.

• Navigating with command-line tools such
as ls and cd can be very tedious which is why ROS
provides tools to help you.

$ rospack find turtlesim
To find the path of the turtlesim package

$ rosls turtlesim
to list the files inside the pack

cmake images srv
package.xml msgopt/ros/noetic/share/turtlesim

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• These dependencies for a package are stored in the package.xml file:
$ roscd beginner_tutorials
$ cat package.xml

<package format="2">
...
 <buildtool_depend>catkin</buildtool_depend>
 <build_depend>roscpp</build_depend>
 <build_depend>rospy</build_depend>
 <build_depend>std_msgs</build_depend>
...
</package>

cat: Utility to concatenate files to standard output

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Key Sections of
`package.xml`:

1. Package Information:

 * `<name>`: The unique name of your ROS package (e.g., `my_robot_pkg`).

 * `<version>`: The version number (e.g., `1.0.0`).

 * `<description>`: A brief description of what the package does.

2. Dependencies:

 * `<buildtool_depend>`: Lists the build tools necessary to compile the package. Typically includes `catkin` (for building packages with catkin).

 * `<build_depend>`: Lists the build-time dependencies, meaning other ROS packages needed during compilation.

 * `<run_depend>`: Lists the run-time dependencies, meaning other ROS packages needed for the package to execute successfully.

 * `<depend>`: This is a deprecated tag that can be used for both build-time and run-time dependencies. It's usually used for packages that are
both build-time and run-time dependent.

3. Maintainers and Authors and url

* `<maintainer>`: Lists the person or team responsible for the package. It includes their name and email address.

4. License:

* `<license>`: Specifies the license under which the package is distributed.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

<?xml version="1.0"?>

<package format="2">

<name>beginner_tutorials</name>

<version>0.0.0</version>

<description>The beginner_tutorials package</description>

<!-- One maintainer tag required, multiple allowed, one person per tag -->

<!-- Example: -->

<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->

<maintainer email="essa@todo.todo">essa</maintainer>

<!-- One license tag required, multiple allowed, one license per tag -->

<!-- Commonly used license strings: -->

<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->

<license>TODO</license>

<!-- Url tags are optional, but multiple are allowed, one per tag -->

<!-- Optional attribute type can be: website, bugtracker, or repository -->

<!-- Example: -->

<url type="website">http://wiki.ros.org/beginner_tutorials</url>

<!-- Author tags are optional, multiple are allowed, one per tag -->

<!-- Authors do not have to be maintainers, but could be -->

<!-- Example: -->

<author email="jane.doe@example.com">Jane Doe</author>

<!-- The *depend tags are used to specify dependencies -->
 <!-- Dependencies can be catkin packages or system dependencies -->
 <!-- Examples: -->
 <!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
 <!-- <depend>roscpp</depend> -->
 <!-- Note that this is equivalent to the following: -->
 <!-- <build_depend>roscpp</build_depend> -->
 <!-- <exec_depend>roscpp</exec_depend> -->
 <!-- Use build_depend for packages you need at compile time: -->
 <!-- <build_depend>message_generation</build_depend> -->
 <!-- Use build_export_depend for packages you need in order to build against this package: -->
 <!-- <build_export_depend>message_generation</build_export_depend> -->
 <!-- Use buildtool_depend for build tool packages: -->
 <!-- <buildtool_depend>catkin</buildtool_depend> -->
 <!-- Use exec_depend for packages you need at runtime: -->
 <!-- <exec_depend>message_runtime</exec_depend> -->
 <!-- Use test_depend for packages you need only for testing: -->
 <!-- <test_depend>gtest</test_depend> -->
 <!-- Use doc_depend for packages you need only for building documentation: -->
 <!-- <doc_depend>doxygen</doc_depend> -->

<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>

 <exec_depend>roscpp</exec_depend>
 <exec_depend>rospy</exec_depend>
 <exec_depend>std_msgs</exec_depend>

 <!-- The export tag contains other, unspecified, tags -->
 <export>
 <!-- Other tools can request additional information be placed here -->

 </export>
</package>

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

1 <?xml version="1.0"?>
2 <package format="2">
3 <name>beginner_tutorials</name>
4 <version>0.1.0</version>
5 <description>The beginner_tutorials package</description>

 6
7 <maintainer email="you@yourdomain.tld">Your Name</maintainer>
8 <license>BSD</license>
9 <url type="website">http://wiki.ros.org/beginner_tutorials</url>

10 <author email="you@yourdomain.tld">Jane Doe</author>
 11
12 <buildtool_depend>catkin</buildtool_depend>

 13
14 <build_depend>roscpp</build_depend>
15 <build_depend>rospy</build_depend>
16 <build_depend>std_msgs</build_depend>

 17
 18 <exec_depend>roscpp</exec_depend>
 19 <exec_depend>rospy</exec_depend>
 20 <exec_depend>std_msgs</exec_depend>
 21
 22 </package>

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

1. `<buildtool_depend>catkin</buildtool_depend>`: This specifies that the `catkin` build system is required to build this package. . It's a core ROS tool for package
management.

2. `<build_depend>roscpp</build_depend>`: Indicates that the `roscpp` package is needed during the build process. `roscpp` provides C++ libraries for ROS
development.

3. `<build_depend>rospy</build_depend>`: Indicates that the `rospy` package is needed during the build process. `rospy` provides Python libraries for ROS
development.

4. `<build_depend>std_msgs</build_depend>`: Indicates that the `std_msgs` package is needed during the build process. `std_msgs` provides standard message
types (e.g., for integers, floats, strings) used in ROS.

5. `<build_export_depend>roscpp</build_export_depend>`: This indicates that `roscpp` needs to be built before building against this package.

6. `<build_export_depend>rospy</build_export_depend>`: This indicates that `rospy` needs to be built before building against this package.

7. `<build_export_depend>std_msgs</build_export_depend>`: This indicates that `std_msgs` needs to be built before building against this package.

8. `<exec_depend>roscpp</exec_depend>`: This indicates that `roscpp` is needed at runtime.

9. `<exec_depend>rospy</exec_depend>`: This indicates that `rospy` is needed at runtime.

10. `<exec_depend>std_msgs</exec_depend>`: This indicates that `std_msgs` is needed at runtime.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

<?xml version="1.0"?>
<package>
<name>my_robot_pkg</name>
<version>1.0.0</version>
<description>A simple ROS package to control a simulated

robot.</description>
<maintainer email="your_email@example.com">Your

Name</maintainer>
<license>BSD</license>

<buildtool_depend>catkin</buildtool_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>

 <run_depend>rospy</run_depend>
 <run_depend>std_msgs</run_depend>
</package>

1. `<buildtool_depend>catkin</buildtool_depend>`: This specifies that
the `catkin` build system is required to build your package. It's a core
ROS tool for package management.

2. `<build_depend>rospy</build_depend>`: This indicates that the
`rospy` package is needed during the build process. `rospy` provides
Python libraries for ROS development.

3. `<build_depend>std_msgs</build_depend>`: This indicates that the
`std_msgs` package is needed during the build process. `std_msgs`
provides standard message types (like integers, floats, strings) used in
ROS.

4. `<run_depend>rospy</run_depend>`: This indicates that the `rospy`
package is required when your package is running (at runtime).

5. `<run_depend>std_msgs</run_depend>`: This indicates that the
`std_msgs` package is required when your package is running (at
runtime).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

CMakeLists.txt

• The CMakeLists.txt file created by catkin_create_pkg will be covered in the later
tutorials about building ROS code.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

package dependencies

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

$ rospack depends1 beginner_tutorials

• roscpp

• rospy

• std_msgs

2-Indirect dependencies

$ rospack depends1 rospy
• genpy
• roscpp
• rosgraph
• rosgraph_msgs
• roslib
• std_msgs

$ rospack depends beginner_tutorials

• cpp_common
• rostime
• roscpp_traits
• roscpp_serialization
• catkin
• genmsg
• genpy
• message_runtime
• gencpp
• geneus
• Gennodejs
• genlisp

`rospack` is a command-line tool
within ROS used to manage and
inspect ROS packages. It's essentially a
package manager, helping you
understand dependencies and
relationships between packages.

`depends1` is a special directive within the `package.xml` file (a ROS package's descriptor).
It declares the dependencies that a package needs to compile and run correctly.
 * The "1" in `depends1` signifies that the package is "build-time" dependent, meaning
it's required to build the package itself.
 * There's also `depends`, which indicates "run-time" dependencies, needed for the
package to execute properly.

• message_generation
• rosbuild
• rosconsole
• std_msgs
• rosgraph_msgs
• xmlrpcpp
• roscpp
• rosgraph
• ros_environment
• rospack
• roslib
• rospy

`beginner_tutorials` is the name of a specific ROS package

rospack: can recursively determine all nested dependencies.

package dependencies
1-First-order dependencies

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

1. Calls `rospack`: It tells the ROS system to use the `rospack` tool.

2. Specifies the `depends1` directive: It asks `rospack` to list all the build-time dependencies for
the `beginner_tutorials` package.

you'll typically see a list of other packages that `beginner_tutorials` relies on to be built
successfully. These dependencies might include:

* Core ROS packages: Like `rospy`, `roscpp`, `std_msgs`, and `sensor_msgs` (for basic
communication and message definitions).

* Specific libraries: If `beginner_tutorials` uses external libraries, they might be listed here.

package dependencies
1-First-order dependencies

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

sudo apt update
sudo apt upgrade
sudo rosdep init
rosdep update

source /opt/ros/noetic/setup.bash
mkdir -p ~/mycatkin_ws/src
cd ~/mycatkin_ws/
catkin_make
catkin_make install
cd ~/mycatkin_ws/src

catkin_create_pkg beginner_tutorials std_msgs rospy roscpp
cd ~/mycatkin_ws
catkin_make
. ~/mycatkin_ws/devel/setup.bash
catkin_make install

source is just a bash builtin that does exactly the same as (.).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• we will inspect a package in ros-
tutorials, please install it using

$ sudo apt-get install ros-noetic-ros-
tutorials

Navigating the ROS
Filesystem

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

شكرا لحسن الاصغاء

https://manara.edu.sy/

	Slide 1: Introduction to Robot Operating System (ROS 1)
	Slide 2
	Slide 3: The Community level
	Slide 6: ROS Filesystem level
	Slide 7:
	Slide 8: Important note
	Slide 9
	Slide 10
	Slide 13: Creating a ROS workspace and Package
	Slide 14: Create a ROS Workspace
	Slide 15: Building a catkin workspace before creation of a package
	Slide 16:
	Slide 17: Creating a ROS Package
	Slide 18: Creating a catkin Package
	Slide 19: Packages
	Slide 20: Building a catkin workspace after creation of a package
	Slide 21: Details of catkin Output:
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: catkin_make install
	Slide 28: package.xml and CMakeLists.txt
	Slide 29: Some ROS Commands
	Slide 30
	Slide 31: Key Sections of `package.xml`:
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: CMakeLists.txt
	Slide 37
	Slide 38
	Slide 39: package dependencies 1-First-order dependencies
	Slide 40
	Slide 41
	Slide 42

